RULES AND REGULATIONS

Title 25—ENVIRONMENTAL PROTECTION

DELAWARE RIVER BASIN COMMISSION [25 PA. CODE CH. 901]

Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware Estuary and Extend These Criteria to Delaware Bay

Summary:

By Resolution No. 2010-13 on December 8, 2010, the Delaware River Basin Commission (DRBC or "Commission") approved amendments to its Water Quality Regulations, Water Code and Comprehensive Plan to update the Commission's human health and aquatic life stream quality objectives (also called "water quality criteria") for toxic pollutants in the Delaware Estuary (DRBC Water Quality Zones 2 through 5) and extended application of the criteria to Delaware Bay (DRBC Water Quality Zone 6).

Effective Date:

Upon publication in the *Pennsylvania Bulletin*. The rule was incorporated by reference into the *Code of Federal Regulations* effective March 23, 2011.

Supplemental Information:

The Delaware River Basin Commission is a federal-state regional agency charged with managing the water resources of the Delaware River Basin without regard to political boundaries. Its members are the governors of the four basin states—Delaware, New Jersey, New York, and Pennsylvania—and the North Atlantic Division Commander of the U.S. Army Corps of Engineers, representing the federal government.

Notice of the proposed amendments appeared in the Pennsylvania Bulletin (40 Pa.B. 4278) on July 31, 2010, as well as in the Federal Register (75 FR 41106) on July 15, 2010, the Delaware Register of Regulations (14 DE Reg. 70-83 (08/01/2010)) on August 1, 2010, the *New* Jersey Register (42 N.J.R. 1702(a)) on August 4, 2010, and the New York State Register (p. 6) on July 21, 2010. A public hearing was held on September 23, 2010 and written comments were accepted through October 1, 2010. The commission received two written submissions and no oral testimony on the proposed changes. The Commission made minor revisions to the proposed amendments in response to the comments received. A comment and response document setting forth the Commission's responses and revisions in detail was approved by the Commission simultaneously with adoption of the final rule.

Resolution No. 2010-13, the text of the final rule, a copy of the comment and response document, and a basis and background document published simultaneously with the proposed rule are available on the Commission's web site, at http://www.state.nj.us/drbc/toxics_info.htm.

Rule Text:

DRBC Resolution No. 2010-13 amends Article 3 of the Water Code and Article 3 of the Administrative Manual—

Part III Water Quality Regulations as set forth below. Additions are printed in **BOLD FACE** and deletions are printed in **[BOLD FACE ENCLOSED IN BRACK-ETS]**. **BOLD FACE UNDERSCORE** indicates changes made in response to comments received during the public comment period. Asterisks indicate ellipsis of rule text retained without changes. [Editor's instructions appear in normal text in brackets.]

Section 3.10.3 Stream Quality Objectives

* * * * *

C. Aquatic Life Objectives for Toxic Pollutants. It is the policy of the Commission to designate numerical stream quality objectives for the protection of aquatic life for the Delaware River Estuary and Bay (Zones 2 through 6 $[\underline{5}]$) which correspond to the designated uses of each zone. Aquatic life objectives for the protection from both acute and chronic effects are herein established on a pollutant-specific basis for:

* * * * *

D. Human Health Objectives for Toxic Pollutants. It is the policy of the Commission to designate numerical stream quality objectives for the protection of human health for the Delaware River Estuary and Bay (Zones 2 through 6 [5]) which correspond to the designated uses of each zone. Stream quality objectives for protection from both carcinogenic and systemic effects are herein established on a pollutant-specific basis for:

* * * * *

3.10.3.D.6. A rate of ingestion of water of 2.0 liters per day is assumed in calculating objectives for river zones where the designated uses include public water supplies after reasonable treatment. A rate of ingestion of fish of [6.5] 17.5 grams per day (equivalent to consuming a 1/2 pound portion every [35] 13 days) is assumed in calculating freshwater and marine stream quality objectives for the protection of human health. [A rate of ingestion of fish of 37 grams per day (equivalent to consuming a 1/2 pound portion every 6 days) is assumed in calculating marine stream quality objectives for human health.

3.10.3.D.8. Numerical criteria for toxic pollutants to protect the taste and odor of ingested water and fish shall be applied as stream quality objectives in [the Estuary] Zones 2—6 if these criteria are more stringent than the calculated human health objectives for carcinogens or systemic toxicants.

Section 3.30 Interstate Streams—Tidal.

* * * *

3.30.2 Zone 2.

* * * * *

[Amend Tables 3, 5, 6 and 7 following subsection 3.30.2 as indicated to update current criteria: remove and add compounds.]

TABLE 3: MAXIMUM CONTAMINANT LEVELS TO BE APPLIED AS HUMAN HEALTH STREAM QUALITY OBJECTIVES IN ZONES 2 AND 3 OF THE DELAWARE RIVER ESTUARY.

OBJECTIVES IN ZONES 2 AND 3 OF THE DELAWARE RIVER ESTUARY.					
Parameter	Maximum Contaminant Level (μg/l)				
Metals					
[Antimony]	[6]				
Arsenic	[50] 10				
Barium	[2.0 mg/l] 2000				
Beryllium	4				
[Cadmium]	[5]				
Chromium (trivalent) [(total)]	100				
Copper	1300				
[Nickel]	[100]				
Lead	15				
Selenium	50				
	cides/PCBs				
alpha-BHC	0.2				
beta-BHC	0.2				
gamma - BHC (Lindane)	[0.2] 2				
2,4-Dichloro-phenoxyacetic acid (2,4-D)	70				
Methoxychlor	40				
Toxaphene	3				
Dioxin (2,3,7,8-TCDD)	0.00003				
2,4,5 Trichloro-phenoxypropionic acid (2,4,5-TP-Silvex)	50				
Volatile Organi	c Compounds (VOCs)				
Benzene	5				
Carbon Tetrachloride	5				
1,2-Dichloroethane	5				
1,1-Dichloroethylene	7				
[1,2-trans-Dichloroethene] 1,2-trans- Dichloroethylene	100				
Dichloromethane (methylene chloride)	5				
[1,2-Dichloropropane]	[5]				
[Ethylbenzene]	[700]				
Tetrachloroethylene (PCE)	5				
Toluene	1000				
Total Trihalomethanes	[100] 80				
[1,2,4-Trichlorobenzene]	[70]				
1,1,1-Trichloroethane	200				
1,1,2-Trichloroethane	5				
Trichloroethylene	5				
Vinyl Chloride	2				
<u> </u>	ic Hydrocarbons (PAHs)				
Benzo(a)Pyrene	0.2				
-	Compounds				
Asbestos	7 million fibers/L				
Bis(2-Ethylhexyl) Phthalate	6				
Fluoride	4,000				
	· · · · · · · · · · · · · · · · · · ·				

Parameter	Maximum Contaminant Level (μg/l)
Nitrate	10,000
Pentachlorophenol	1
Dioxin (2,3,7,8-TCDD)	0.00003

* * * * *

TABLE 5: STREAM QUALITY OBJECTIVES FOR TOXIC POLLUTANTS FOR THE PROTECTION OF AQUATIC LIFE IN THE DELAWARE RIVER ESTUARY $\bf AND~BAY$.

Parameter	Freshwater C		Objectives g/l)			
	Acute Chronic			Chronic		
Metals [(Values indicated are total recoverable; See Section 3.10.3.C.2. for form of metal)]						
Aluminum ^{a,b}	750	87	[-] NA	[-] NA		
Arsenic (trivalent) ^c	[360] 340	[190] 150	69	36		
	[e ^{(1.128*LN(Hardness)-3.828)}]	$\left[\begin{array}{c}e^{(0.7852*LN(Hardness)-3.49)}\end{array}\right]$				
Cadmium ^c	0.651*EXP(1.0166* LN(hardness)-3.924)	0.651*EXP(0.7409* LN(hardness)-4.719)	[43] 40	[9.3] 8.8		
	[e ^{(0.8190*LN(Hardness)+3.688)}]	$\left[e^{(0.8190*LN(Hardness)+1.561)} \right]$				
Chromium (trivalent) ^c	0.277*EXP(0.819* LN(hardness)+3.7256)	0.277*EXP(0.819* LN(hardness)+0.6848)	[-] NA	[-] NA		
Chromium (hexavalent) ^c	16	11	1,100	50		
Copper ^c	[e ^{(0.9422*LN(Hardness)-1.464)}] 0.908*EXP(0.9422* LN(hardness)-1.7)	[e ^{(0.8545*LN(Hardness)-1.465)}] 0.908*EXP(0.8545* LN(hardness)-1.702)	[5.3] 4.8	[3.4] 3.1		
Lead ^c	[48] 38	[16] 5.4	[220] 210	[8.5] 8.1		
Mercury ^c	[2.4] 1.4	[0.012] 0.77	[2.1] 1.8	[0.025] 0.94		
Nickel ^c	[e ^{(0.846*LN(Hardness)+3.3612)}] 0.846*EXP(0.846* LN(hardness)+2.255)	[e ^{(0.846*LN(Hardness)+1.1645)}] 0.846*EXP(0.846* LN(hardness)+0.0584)	[75] 64	[8.3] 22		
Selenium ^a	20 5.0		[300] 290	71		
Silver ^c	[e ^{(1.72*LN(Hardness)-6.52)}] 0.85*EXP(1.72* LN(hardness)-6.59) [-] NA		[2.3] 1.9	[-] NA		
Zinc ^c	[e ^{(0.8473*LN(Hardness)+0.8604)}] 0.95*EXP(0.8473* LN(hardness)+0.884)	$ \begin{array}{c} \left[\ e^{(0.8473*LN(Hardness)+0.7614)} \ \right] \\ 0.95*EXP(0.8473* \\ LN(hardness)+0.884) \end{array} $	[95] 90	[86]81		
	Pesticides/P0	CBs				
Aldrin	[1.5] 3	[-] NA	[0.65] 1.3	[-] NA		
gamma - BHC (Lindane)	[1.0] 0.95	[0.08] NA	[0.08] 0.16	[-] NA		
Chlordane	[1.2] 2.4	0.0043	[0.045] 0.09	0.004		
Chlorpyrifos (Dursban)	0.083	0.041	0.011	0.0056		
DDT and metabolites (DDE & DDD) ^d	[0.55] 1.1	0.001	[0.065] 0.13	0.001		
Dieldrin	[1.25] 0.24	[0.0019] 0.056	[0.355] 0.71	0.0019		

Parameter	Freshwater Objectives (µg/l)			Objectives g/l)	
	Acute	Chronic	Acute	Chronic	
Endosulfan ^e	[0.11] 0.22	0.056	[0.017] 0.034	0.0087	
Endrin	[0.09] 0.086	[0.0023] 0.036	[0.019] 0.037	0.0023	
Heptachlor	[0.26] 0.52	0.0038	[0.027] 0.053	0.0036	
Heptachlor Epoxide	0.52	0.0038	0.053	0.0036	
Parathion	0.065	0.013	[-] NA	[-] NA	
PCBs (Total)	1.0	0.014	5.0	0.03	
Toxaphene	0.73	0.0002	0.21	0.0002	
	Other Compo	ounds			
Cyanide (free) [(total)]	22	5.2	[1.0] [<u>2</u> .7] 1	[-]1	
Pentachlorophenol	e ^(1.005*pH-4.83)	e ^(1.005*pH-5.29)	13	7.9	
Indicator Parameters					
Whole Effluent Toxicity	0.3 Toxic Units _{acute}	$1.0 \text{ Toxic Units}_{\text{chronic}}$	$0.3~{\rm TU_a}$	$1.0~{ m TU_c}$	

Footnotes to Table 5:

Criteria for cadmium, chromium (trivalent), copper, nickel, silver and zinc are hardness-dependent and are expressed as the dissolved form (see Section 3.10.3.C.2. on form of metal).

TABLE 6: STREAM QUALITY OBJECTIVES FOR CARCINOGENS FOR THE DELAWARE RIVER ESTUARY AND BAY.

PARAMETER	[EPA class]	FRESHWATER OBJECTIVES (µg/l)		MARINE OBJECTIVES (µg/l)
		FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY
		Metals		
Arsenic		* [<u>0.017</u>]	NA	NA
[Beryllium]		[0.00767]	[0.132]	[0.0232]
	Pe	sticides/PCBs		
Aldrin	[B2]	[0.00189] 0.000049	[0.0226] 0.000050	[0.00397] 0.000050
Alpha—BHC	[B2]	[0.00391] 0.0026	[0.0132] 0.0049	[0.00231] 0.0049
beta—BHC	[C]	0.0091	0.017	0.017
Chlordane	[B2]	[0.000575] 0.00080	[0.000588] 0.00081	[0.000104] 0.00081
DDD	[B2]	[0.00423] 0.00031	[0.00436] 0.00031	[0.000765] 0.00031
DDE	[B2]	[0.00554] 0.00022	[0.00585] 0.00022	[0.00103] 0.00022

^a Total recoverable criteria

^b Aluminum criteria listed are restricted to waters with pH between 6.5 and 9.0.

^c Dissolved criteria

^d Criteria apply to DDT and its metabolites (i.e., the total concentration of DDT and its metabolites should not exceed this value).

^e Values were derived from data for endosulfan and are most appropriately applied to the sum of alpha-endosulfan and beta-endosulfan.

PARAMETER	[EPA class]	FRESHWATER OBJECTIVES (µg/l)		MARINE OBJECTIVES (µg/l)
		FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY
DDT	[B2]	[0.000588] 0.00022	[0.000591] 0.00022	[0.000104] 0.00022
Dieldrin	[B2]	[0.000135] 0.000052	[0.000144] 0.000054	[0.0000253] 0.000054
Heptachlor	[B2]	[0.000208] 0.000079	[0.000214] 0.000079	[0.0000375] 0.000079
Heptachlor Epoxide	[B2]	[0.000198] 0.000039	[0.000208] 0.000039	[0.0000366] 0.000039
PCBs (Total)	[B2]	0.0000444	0.0000448	0.0000079
Toxaphene	[B2]	[0.000730] 0.00028	[0.000747] 0.00028	[0.000131] 0.00028
	Volatile Orga	nic Compounds (VO	Cs)	
Acrylonitrile	[B1]	[0.0591] 0.051	[0.665] 0.25	[0.117] 0.25
Benzene	[A]	[1.19] 0.61	[71.3] 14	[12.5] 14
Benzidine	[A]	[0.000118] 0.000086	[0.000535] 0.00020	[0.000094] 0.00020
Bromoform	[B2]	[4.31] 4.3	[164.0] 140	[28.9] 140
Bromodichloromethane	[B2]	[0.559] 0.55	[55.7] 17	[9.78] 17
Carbon Tetrachloride	[B2]	[0.254] 0.23	[4.42] 1.6	[0.776] 1.6
Chlorodibromomethane	[C]	[0.411] 0.40	[27.8] 13	[4.88] 13
Chloroform	[B2]	[5.67] 5.7	[471.0] 470	[82.7] 470
3,3-Dichlorobenzidine	[B2]	[0.0386] 0.021	[0.0767] 0.028	$\left[egin{array}{c} 0.0135 \ 0.028 \end{array} ight]$
1,2-Dichloroethane	[B2]	[0.383] 0.38	[98.6] 37	[17.3] 37
[1,1-Dichloroethene]	[C]	[0.0573]	[3.20]	[0.562]
1,2-Dichloropropane	[B2]	0.50	15	15
1,3-Dichloropropene	[B2]	[87.0] 0.34	[14.1] 21	[2.48] 21
Dichloromethane (Methylene chloride)	[B2]	[4.65] *	[1,580] 590	[277] 590
[Tetrachloroethene] Tetrachloroethylene	[B2]	[0.80] 0.69	[8.85] 3.3	[1.55] 3.3
[1,1,1,2-Tetrachloroethane]	[C]	[1.29]	[29.3]	[5.15]
1,1,2,2-Tetrachloroethane	[c]	[0.172] 0.17	[10.8] 4.0	[1.89] 4.0
1,1,2-Trichloroethane	[C]	[0.605] 0.59	[41.6] 16	[7.31] 16
[Trichloroethene] Trichloroethylene	[B2]	[2.70] 2.5	[80.7] 30	[14.2] 30
Vinyl Chloride	[A]	[2.00] 0.025	[525.0] 2.4	[92.9] 2.4
		atic Hydrocarbons (
Benz[a]anthracene	[B2]	[0.00171] 0.0038	[0.00177] 0.18	[0.00031] 0.18
Benzo[b]fluoranthene	[B2]	[0.000455] 0.038	[0.000460] 0.18	[0.000081] 0.18
Benzo[k]fluoranthene	[B2]	[0.000280] 0.38	[0.000282] 1.8	[0.000049] 1.8

PARAMETER	[EPA class]	FRESHWATER OBJECTIVES (µg/l)		MARINE OBJECTIVES (µg/l)
	[FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY
Benzo[a]pyrene	[B2]	[0.0000644] 0.0038	[0.0000653] 0.018	[0.0000115] 0.018
Chrysene	[B2]	[0.0214] 3.8	[0.0224] 18	[0.00394] 18
Dibenz[a,h]anthracene	[B2]	[0.0000552] 0.0038	[0.0000559] 0.018	[0.0000098] 0.018
Indeno[1,2,3-cd]pyrene	[B2]	[0.0000576] 0.038	[0.0000576] 0.18	[0.0000101] 0.18
	Oth	er Compounds		
Bis (2-chloroethyl) ether	[B2]	[0.0311] 0.03	[1.42] 0.53	[0.249] 0.53
Bis (2-ethylhexyl) phthalate	[B2]	[1.76] 1.2	[5.92] 2.2	[1.04] 2.2
[Dinitrotoluene mixture (2,4 & 2,6)] 2,4-Dinitrotoluene	[B2]	[17.3] 0.11	[1420] 3.4	[249] 3.4
1,2-Diphenylhydrazine	[B2]	[0.0405] 0.036	[0.541] 0.2	[0.095] 0.2
Hexachlorobenzene	[B2]	[0.000748] 0.00028	[0.000775] 0.00029	[0.000136] 0.00029
Hexachlorobutadiene	[C]	[0.445] 0.44	[49.7] 18	[8.72] 18
Hexachloroethane	[C]	[1.95] 1.4	[8.85] 3.3	[1.56] 3.3
Isophorone	[B2]	[36.3] 35	[2590] 960	[455] 960
N-Nitrosodi-N-butylamine	[B2]	0.0063	14	14
N-Nitrosodi-N-methylamine	[B2]	[0.000686] 0.00069	[8.12] 3.0	[1.43] 3.0
N-Nitrosodiethylamine	[B2]	0.0008	1.24	1.24
N-Nitrosodi-N-phenylamine	[B2]	[4.95] 3.3	[16.2] 6	[2.84] 6
N-Nitrosodi-N-propylamine	[B2]	[0.00498] 0.0050	[1.51] 0.51	[0.265] 0.51
N-Nitrosopyrrolidine	[B2]	0.016	34	34
Pentachlorophenol	[B2]	[0.282] 0.27	[8.16] 3.0	[1.43] 3.0
Dioxin (2,3,7,8-TCDD)	[NA]	[1.3 x 10 ⁻⁸] 0.000000005	[1.4 x 10 ⁻⁸] 0.0000000051	[2.4 x 10 ⁻⁹] 0.0000000051
2,4,6-Trichlorophenol	[B2]	[2.14] 1.4	[6.53] 2.4	[1.15] 2.4

 $[\]ensuremath{^{*}}$ The MCL for this compound applies in Zones 2 and 3 and is listed in Table 3.

TABLE 7: STREAM QUALITY OBJECTIVES FOR SYSTEMIC TOXICANTS FOR THE DELAWARE RIVER ESTUARY ${\bf AND~BAY}$

PARAMETER	[EPA Class]	FRESHWATER OBJECTIVES (µg/l)		MARINE OBJECTIVES (µg/l)	
		FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY	
Metals					
Antimony		[14.0] 5.6	[4,310] 640	[757] 640	
Arsenic	[A]	[9.19] *	[73.4] NA	[12.9] NA	

				MARINE
PARAMETER	[EPA Class]	FRESHWATER OBJECTIVES (µg/l) FISH & FISH		OBJECTIVES (µg/l)
			FISH INGESTION ONLY	FISH INGESTION ONLY
Beryllium	[B2]	[165] *	[2,830] [<u>42</u>] 420	[498] [<u>42</u>] 420
Cadmium		[14.5] 3.4	[84.1] 16	[14.8] 16
Chromium (trivalent)		[33,000] *	[673,000] 380,000	[118,000] 380,000
[Hexavalent] Chromium (hexavalent)	[A]	[166] 92	[3,370] NA	[591] NA
Chromium (Total)		NA	750	750
Mercury		[0.144] 0.050	[0.144] 0.051	[0.144] 0.051
Methylmercury		0.3 mg/kg fish tissue	0.3 mg/kg fish tissue	0.3 mg/kg fish tissue
Nickel		[607] 500	[4,580] 1,700	[805] 1,700
Selenium		[100] 170	[2,020] 4,200	[355] 4,200
Silver		[175] 170	[108,000] 40,000	[18,900] 40,000
Thallium		[1.70] 0.24	[6.20] 0.47	[1.10] 0.47
Zinc		[9110] 7,400	[68700] 26,000	[12100] 26,000
	Pe	sticides/PCBs		
Aldrin	[B2]	[0.96] 0.025	[11.5] 0.025	[2.03] 0.025
gamma - BHC (Lindane)		[7.38] 0.98	[24.9] 1.8	[4.37] 1.8
Chlordane	[B2]	[0.0448] 0.14	[0.0458] 0.14	[0.00805] 0.14
DDT and Metabolites (DDD and DDE)	[B2]	[0.100] 0.037	[0.100] 0.037	[0.0176] 0.037
Dieldrin	[B2]	[0.108] 0.041	[0.115] 0.043	[0.020] 0.043
[Endosulfan]		[111]	[239]	[42.0]
alpha -Endosulfan		62	89	89
beta- Endosulfan		62	89	89
Endosulfan Sulfate		62	89	89
Endrin	[D]	[0.755] 0.059	[0.814] 0.060	[0.143] 0.060
Endrin Aldehyde	F - 1	0.29	0.30	0.30
Heptachlor	[B2]	[0.337] 0.18	[0.344] 0.18	[0.060] 0.18
Heptachlor Epoxide	[B2]	[0.0234] 0.0046	[0.0246] 0.0046	[0.00433] 0.0046
Total PCBs	[B2]	0.00839	0.00849	0.00149
	Volatile Orga	nic Compounds (VC	1	
Acrolein		[320] 6.1	[780] 9.3	[137] 9.3
Benzene	F- 3	*	3,100	3,100
Bromoform	[B2]	[682] 650	[25,900] 9,600	[4,560]9,600
Bromodichloromethane	[B2]	[693] 680	[69,000] NA	[12,100] NA
Dibromochloromethane	[C]	[690] 680	[46,600] 21,000	[8,190] 21,000
Carbon Tetrachloride	[B2]	[23.1] *	[402] 150	[70.6] 150
Chloroform	[B2]	[346] 68	[28,700] 2,100	[5,050] 2,100

				MARINE
PARAMETER	[EPA Class]	FRESHWATER OBJECTIVES (µg/l)		OBJECTIVES (µg/l)
		FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY
Chlorobenzene	[D]	[677] 130	[20,900] 1,600	[3,670] 1,600
[1,1-Dichloroethene] 1,1-Dichloroethylene	[c]	[309] *	[17,300] 7,100	[3,040] 7,100
[1,2]-trans-Dichloro- ethene] 1,2-trans-Dichloro- ethylene		[696] 140	[136,000] 10,000	[23,900] 10,000
1,3-Dichloropropene	[B2]	[10.4] 1,000	[1,690] 63,000	[297] 63,000
Ethylbenzene		[3,120] 530	[28,700] 2,100	[5,050] 2,100
Methyl Bromide		[49.0] 47	[N/A] 1,500	[N/A] 1,500
Methylene Chloride	[B2]	[2,090] *	[710,000] 260,000	[125,000] 260,000
1,1,2-Trichloroethane	[C]	[138] *	[9,490] 3,600	[1,670] 3,600
[Tetrachloroethene] Tetrachloroethylene		[318] *	[3,520] 1,300	[618] 1,300
[1,1,1,2-Tetrachloroethane]	[C]	[1,000]	[22,400]	[3,940]
Toluene		[6,760] 1,300	[201,000] 15,000	[35,400] 15,000
	Polycyclic Arom	atic Hydrocarbons	(PAHs)	
Anthracene	[D]	[4,110] 8,300	[6,760] 40,000	[1,190] 40,000
Fluoranthene		[296] 130	[375] 140	[65.8] 140
Fluorene	[D]	[730] 1,100	[1,530] 5,300	[268] 5,300
Pyrene	[D]	[228] 830	[291] 4,000	[51.1] 4,000
	Oth	er Compounds		
Acenaphthene		[1,180] 670	[2,670] 990	[469] 990
Benzidine	[A]	[81.8] 59	[369] 140	[64.9] 140
Bis (2-chloroisopropyl) ether		[1,390] 1,400	[174,000] 65,000	[30,600] 65,000
Bis (2-ethylhexyl) phthalate	[B2]	[492] *	[1,660] 620	[291] 620
Butylbenzyl phthalate	[C]	[298] 1,500	[520] 1,900	[91.4] 1,900
2-Chloronaphthalene		1,000	1,600	1,600
2-Chlorophenol		[122] 81	[402] 150	[70.6] 150
Cyanide		140	140	140
Dibutyl Phthalate	[D]	[2,710] 2,000	[12,100] 4,500	[2,130] 4,500
1,2-Dichlorobenzene	[D]	[2,670] 420	[17,400] 1,300	[3,060] 1,300
1,3-Dichlorobenzene	[D]	[414] 420	[3,510] 1,300	[617] 1,300
1,4-Dichlorobenzene		[419] 63	[3,870] 190	[677] 190
2,4-Dichlorophenol		[92.7] 77	[794] 290	[139] 290
Diethyl Phthalate	[D]	[22,600] 17,000	[118,000] 44,000	[20,700] 44,000
Dimethyl Phthalate	[D]	[313,000] 270,000	[2,990,000] 1,100,000	[526,000] 1,100,000
2,4-Dimethylphenol		[536] 380	[2,300] 850	[403] 850
2,4-Dinitrophenol		[70] 69	[14,300] 5,300	[2,500] 5,300
2,4-Dinitrotoluene		[69.2] 68	[5670] 2,100	[996] 2,100

PARAMETER	[EPA Class]	FRESHWATER OBJECTIVES (µg/l)		MARINE OBJECTIVES (µg/l)
		FISH & WATER INGESTION	FISH INGESTION ONLY	FISH INGESTION ONLY
Hexachlorobenzene	[B2]	[0.958] 0.35	[0.991] 0.36	[0.174] 0.36
[Hexachlorobutadiene]	[C]	[69.4]	[7,750]	[1,360]
Hexachlorocyclopentadiene		[242] 40	[17,400] 1,100	[3,050] 1,100
Hexachloroethane	[C]	[27.3] 20	[124] 46	[21.7] 46
Isophorone	[C]	[6,900] 6,700	[492,000] 180,000	[86,400] 180,000
2-Methyl-4,6-dinitrophenol		13	280	280
Nitrobenzene	[D]	[17.3] 17	[1,860] 690	[327] 690
Pentachlorobenzene		1.4	1.5	1.5
Pentachlorophenol		[1,010] *	[29,400] 11,000	[5,160] 11,000
Phenol		[20,900] 10,000	[4,620,000] 860,000	[811,000] 860,000
1,2,4,5-Tetrachlorobenzene		0.97	1.1	1.1
1,2,4-Trichlorobenzene	[D]	[255] 35	[945] 70	[166] 70
2,4,5-Trichlorophenol		1,800	3,600	3,600
Vinyl Chloride		*	10,000	10,000

^{*} The MCL for this compound applies in Zones 2 and 3 and is listed in Table 3.

* * * * *

3.30.6 Zone 6.

* * * *

[Add the following text immediately following sub-section 3.30.6 C.10. and preceding sub-section 3.30.6 D.]

- 11. Toxic Pollutants.
- a. Applicable criteria to protect the taste and odor of ingested water and fish are presented in Table 4.
- b. Applicable marine stream quality objectives for the protection of aquatic life are presented in Table 5.
- c. Applicable marine stream quality objectives for the protection of human health are presented in Tables 6 and 7.

PAMELA M. BUSH, Secretary

Fiscal Note: Fiscal Note 68-55 remains valid for the final adoption of the subject regulation.

Annex A

TITLE 25. ENVIRONMENTAL PROTECTION

PART V. DELAWARE RIVER BASIN COMMISSION

CHAPTER 901. GENERAL PROVISIONS

§ 901.2. Comprehensive Plan and water quality.

The Comprehensive Plan regulations as set forth in 18 CFR Part 401, Subpart A (2011) and the Water Code and Water Quality Standards as set forth in 18 CFR Part 410 (2011) are hereby incorporated by reference and made a part of this title.

[Pa.B. Doc. No. 11-1043. Filed for public inspection June 24, 2011, 9:00 a.m.]

PENNSYLVANIA BULLETIN, VOL. 41, NO. 26, JUNE 25, 2011